PCCH-Arctic – Polar Climate and Cultural Heritage – Preservation and Restoration Management

Project presentation and current results

Sinitsyn, A.O., Westermann, S., Arlov, T. B., Landgren, O., Meyer, A., Lutz, J., Aga, J., Bekele, Y.

Key words: Permafrost, geotechnics, adaptation to climate change, impacts of climate change, climate change, climate warming, climate projections, Arctic, Hiorthhamn, Svalbard, Ny-Ålesund, Longyearbyen

BA

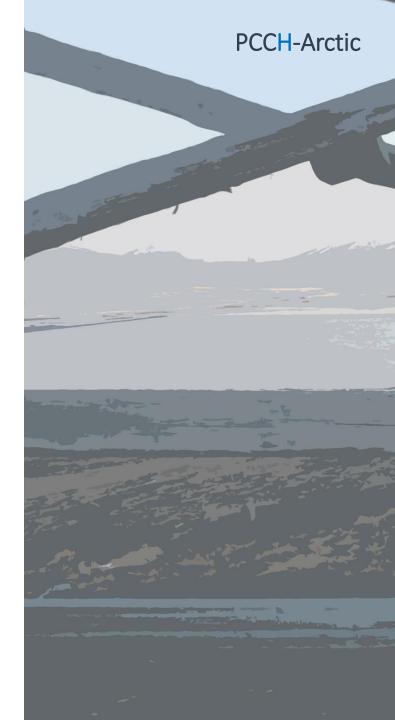
University of Oslo

DOI: https://dx.doi.org/11250/3035461

Version: Frostdagen of Norwegian Geotechnical Society, November 24th 2022, Oslo

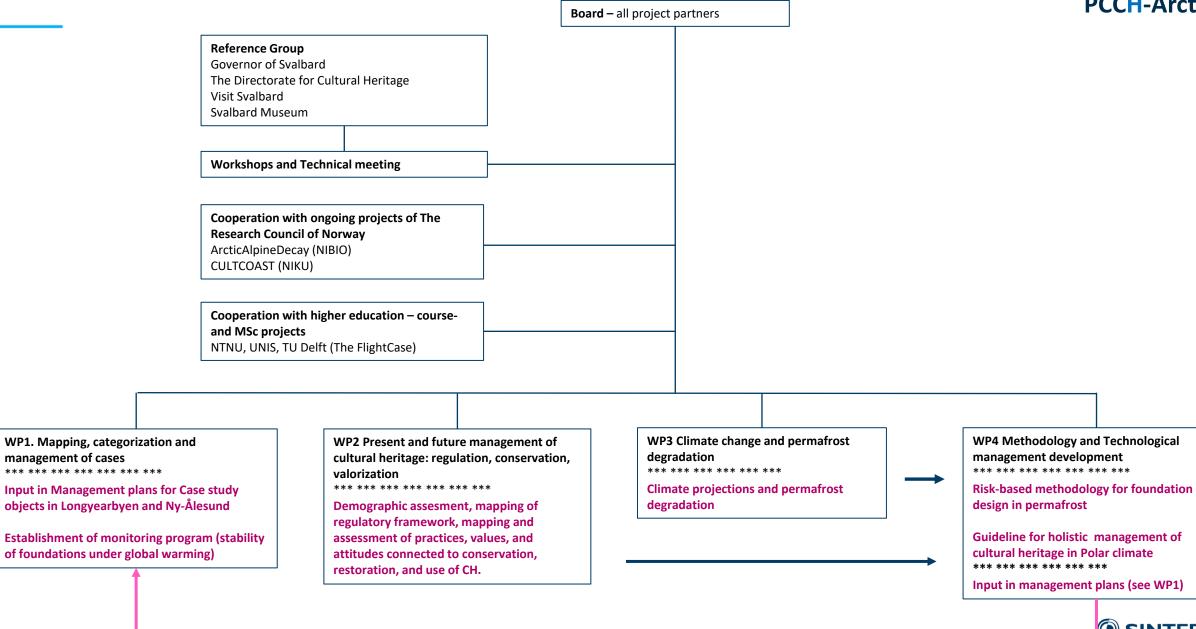
Study location

Reference: Wikipedia

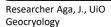

Reference: https://toposvalbard.npolar.no/

Permafrost in Northern Hemisphere. Reference: Circumpolar Active-Layer Permafrost System (CAPS), version 1.0. International Permafrost Association, 1998

PCCH-Arctic – Polar Climate and Cultural Heritage – Preservation and Restoration Management


- **Objectives:** to create a knowledge base for sustainable safeguarding and future use of cultural heritage in the Arctic in conditions of changing climate and demography
- Project period: 2021–2024
- Funding: The Research Council of Norway and User Partners, 10 MNOK (Cash) + 1.08 MNOK (InKind), i.e. ~1 MEuro.
- Project type: collaboration project to meet challenges in society and buisness (KSP)
- User Partners: Longyearbyen Lokalstyre, Store Norske Spitsbergen Kulkompani (SNSK) AS and Kings Bay AS
- Research Partners: Sintef, The Norwegian Meteorological Institute, UiO, UNIS and UniVie
- **Reference group:** Governor of Svalbard, The Directorate for Cultural Heritage, Visit Svalbard, Svalbard Museum
- Web-page: https://www.sintef.no/prosjekter/2021/pcch-arctic/
- Research Council of Norway project number: 320769, SINTEF project number: 102024999

Outline of PCCH-Arctic


PCCH-Arctic

SINTEF

Researchers

Ass. Prof. Arlov, T.I History

NIS

Dr. Bekele, Y., SINTEF Geotechnics

Dr. Landgren, O., The Norwegian Meteorological Institute

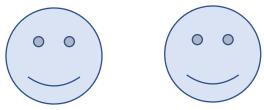
Dr. Lutz, J., The Norwegian Meteorological Institute

PhD Meyer, A., UniVie Sociology

Dr. Sinitsyn, A., SINTEF Geotechnics, **Project lead**

Ass. Prof. Westermann, S., UiO Geocryology

MSc '22 Enevoldsen, K., UNIS/NTNU



MSc '23 Haugen, C.G., NTNU

MSc '23 Johansen Seljelv I., NTNU

MSc '23 Pasquini, N., UNIS/ UNIVPM MSc '23 Vehola, A., UNIS/LUT

Research hypotheses

RH1: Costs of maintaining and restoring cultural heritage objects are quite high and the volume of objects is staggering. New technological solutions may be applied or developed to both lower the costs and improving the quality of the work.

RH2: Conservation of cultural heritage in the Arctic (objects, monuments, sites) faces a double challenge from the warming climate and increasing human activity. At the same time, cultural heritage can play an important role in sustainable development of the North. **Management plans** that take **socio-cultural** as well **environmental** and **technical** factors into account will make sustainable use of cultural heritage possible.

RH3: Expected climate change impact on cultural heritage in permafrost environments should be accounted via **risk-based management**, which is linked to probabilistic approaches for hazard assessment and geotechnical and foundation design in permafrost.

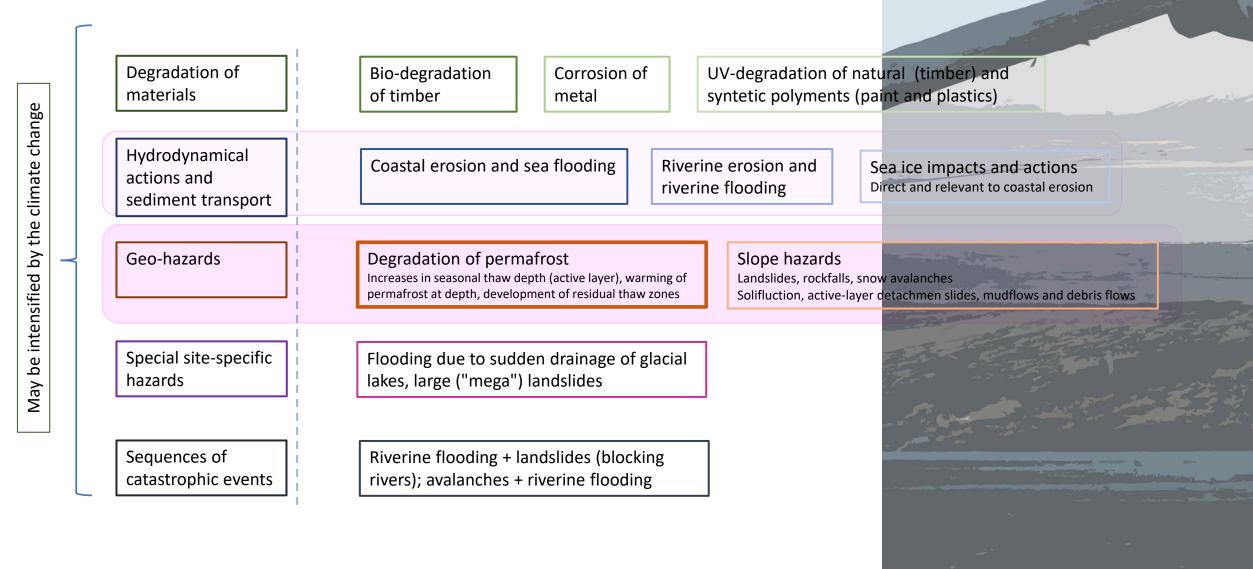
RH4: Definition of **permafrost temperatures**, currently based on historical data, n-factors and field investigations **should be substituted by the surface energy balance models**.

RH5: Currently used analytically and empirically based tools for geotechnical and foundation design in permafrost should be substituted with **emerging numerical tools**.

Research questions

RQ1: Can new technological solutions, applied or developed by the project, lower the cost and improve the quality of the work?

RQ2: How do changing preferences, patterns and levels of tourist traffic combined with local demographic development impact on cultural heritage in Svalbard?


RQ3: How can we take expected climate change impacts into account in risk-based management of cultural heritage in permafrost environments?

RQ4: Is the definition of permafrost temperatures based on historical data, n-factors, and field investigations suitable for geotechnical and foundation design in permafrost in rapidly changing climate?

RQ5: Can emerging numerical tools for geotechnical and foundation design in permafrost replace currently used analytical and empirical solutions?

PCCH-Arctic

Some natural hazards in cold regions, which may be relevant to cultural heritage

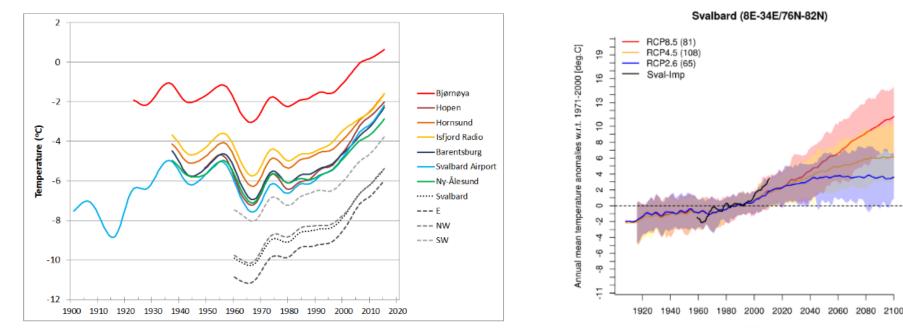
Other impacts on cultural heritage

Direct impacts due to the use

Impacts on the cultural heritage sites

Urban developments

Pollutans (?)


++?

"Wear and tear" due to use

Impacts on vegatation, land surface, etc.

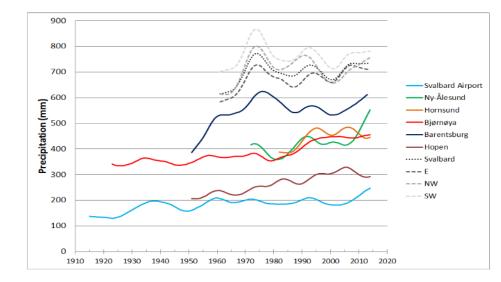
Climate change – air temperature in Svalbard: 1900–2100

Years

Annual mean temperature anomalies. Reference: Hanssen-Bauer, et al., 2019 Report "Climate in Svalbard 2100". NCCS report no. 1/2019. Commissioned by Miljødirektoratet

The Arctic is warming faster than the rest of the world

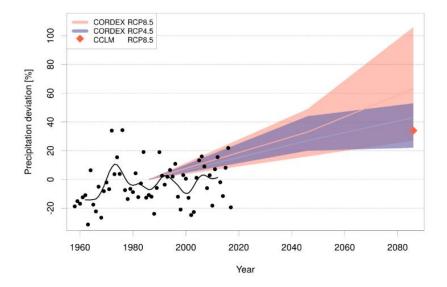
Annual mean temperature for weather stations and regions in Svalbard. Reference:


Commissioned by Miljødirektoratet

Hanssen-Bauer, et al., 2019 Report "Climate in Svalbard 2100". NCCS report no. 1/2019.

In Svalbard, most of the warming is in the winter season (which will prevent maintaining permafrost regime in the ground) Climate models show strong future temperature increase for Svalbard.

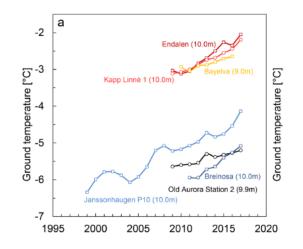
Differences between socio-economic scenarios are naturally larger by the end of the century.


Climate change – precipitation: 1900–2100

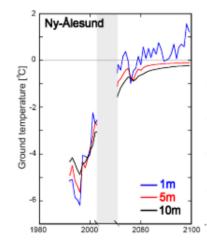
Annual mean precipitation for weather stations and regions in Svalbard. Reference: Hanssen-Bauer, et al., 2019 Report "Climate in Svalbard 2100". NCCS report no. 1/2019. Commissioned by Miljødirektoratet.

Warming means less snow and more rain. Wind causes undercatch (negative bias) of snow.

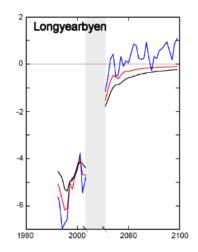
Many stations show increase in precipitation, but part of this is due to less undercatch.


Annual mean precipitation for Svalbard area as deviation (%) from the reference period 1971-2000. Reference: Hanssen-Bauer, et al., 2019 Report "Climate in Svalbard 2100". NCCS report no. 1/2019. Commissioned by Miljødirektoratet.

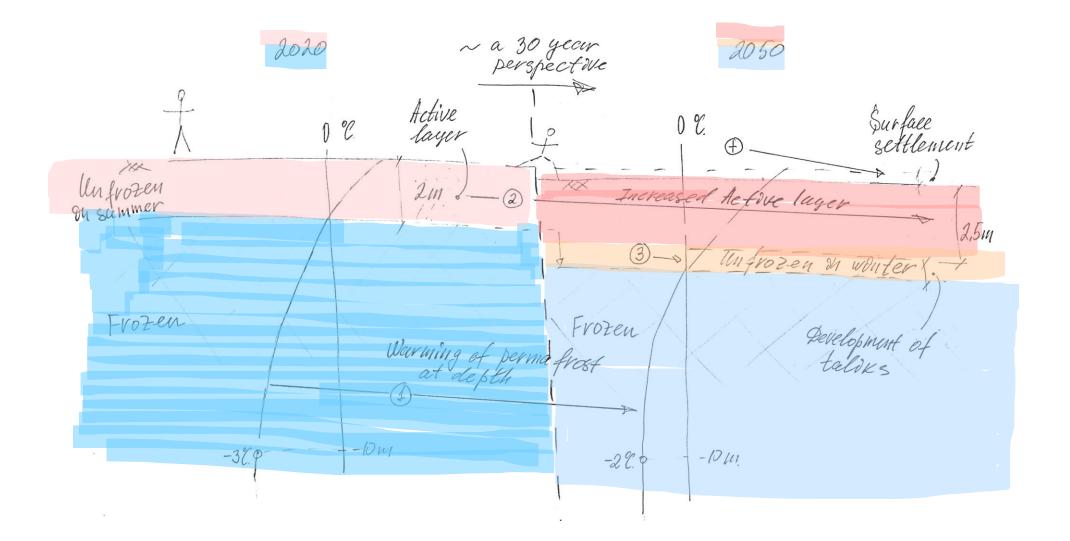
Model simulations show future increase in precipitation.


Impacts of global warming on permafrost in Longyearbyen and Ny-Ålesund

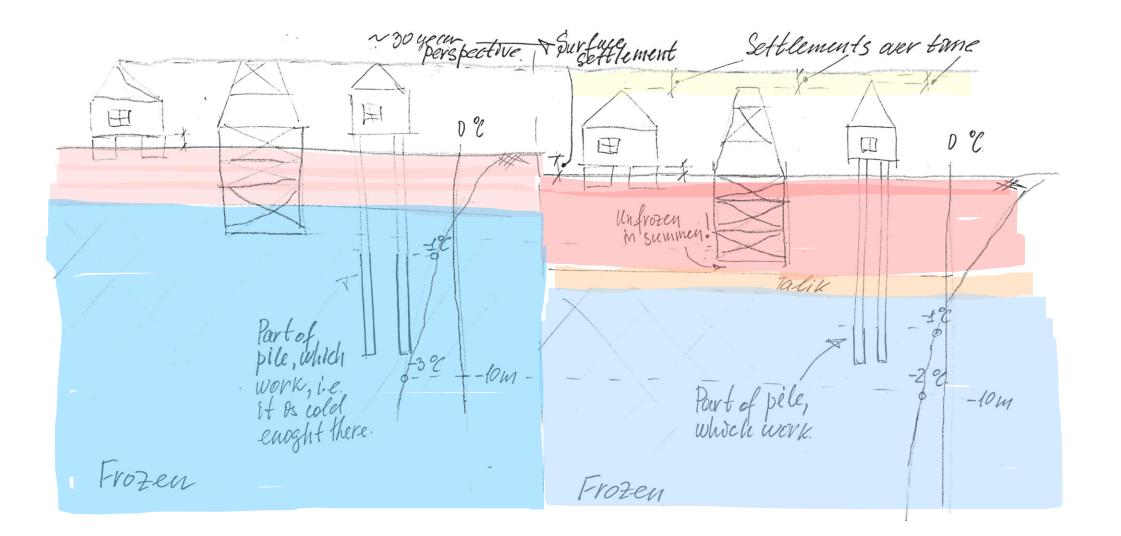
			201	2008-2009			
Location	Borehole name/ ID	MAT MGST		MGT	ALT	MGT	ALT
		(°C)	(°C)	(°C)	(cm)	(°C)	(cm)
	Old Aurora Station 2	-1.9	-1.3	-5.2(9.9 m)	94	-5.6 (9.9 m)	90
	Endalen	-1.9		-2.7 (19 m)	190	-3.2 (15 m)	120
Adventdalen	Breinosa	-3.8	-4.1	-5.1 (10 m)	49	n/a	n/a
	Janssonhaugen/ P10	-3.8	n/a	-5.0 (20 m)	n/a	-5.5 (20m) ^µ	170
	Janssonhaugen/ P11	-3.8	-3.7(0.2 m)	n/a	185	n/a	170
Ny-Ålesund	Bayelva	-2.3	-3.6	-2.8 (9 m)	200	-2.9 (9 m) ^π	180
Kapp Linné	Kapp Linné 1	-1.2	-1.6	-2.6 (20 m)	300	-3.1 (15 m)	250
	Kapp Linné 2	-1.2	-1.6	-2.8 (20 m)	190	-3.2 (15 m)	180


Permafrost monitoring sites with mean ground temperatures near or at the depth of zero annual amplitude. Reference: Christiansen et al., 2019 and Christiansen et al., 2010

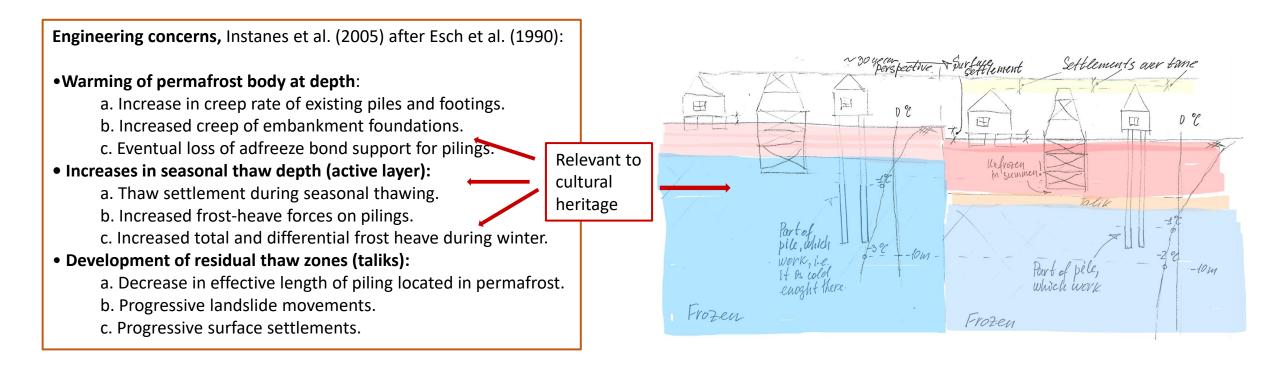
Annual mean ground temperatures (MGT) at selected monitoring sires in Svalbard. Reference: Hanssen-Bauer, et al., 2019 Report "Climate in Svalbard 2100". NCCS report no. 1/2019. Commissioned by Miljødirektoratet. Data series are updated from Isaksen et al. 2007a, Christiansen et al. 2010 and Boike et al. 2018.



Permafrost modelling results for Ny-Ålesund. Reference: Hanssen-Bauer, et al., 2019 Report "Climate in Svalbard 2100". NCCS report no. 1/2019. Commissioned by Miljø-direktoratet.



Permafrost modelling results for Longyearbyen. Reference: Hanssen-Bauer, et al., 2019 Report "Climate in Svalbard 2100". NCCS report no. 1/2019. Commissioned by Miljø-direktoratet.


Impacts of global warming – **degradation of permafrost**

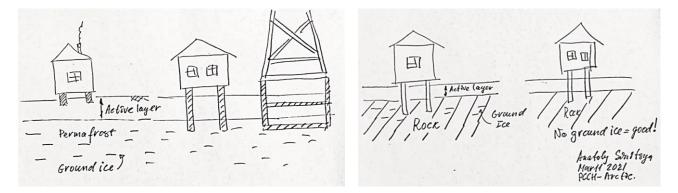
Impacts of degrading permafrost on structures – settlements and stresses

Engineering concerns related to degradation of permafrost

Handling of engineering concerns related to degradation of permafrost, Instanes et al. (2005): Sensitive vs insensitive infrastructure → use of different approaches

Sensitive infrastructure: large sensitivity and large consequences → detailed analysis ... that may require more detailed geotechnical investigations (including local measurements of ground temperatures) and monitoring, detailed measurements of ground temperatures

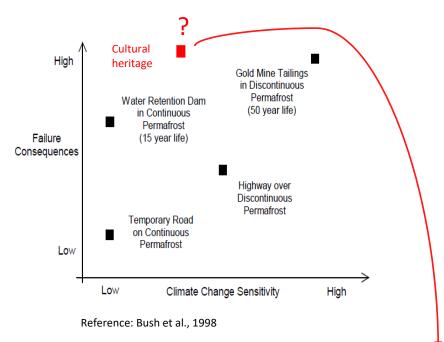
Built technical-industrial cultural heritage: may be not that sensitive (when presented by simple structures as small houses), but consequences may extremely hight (due to extremely hight value)


PCCH-Arctic

Engineering concerns related to degradation of permafrost

- **<u>1. Sensitivity</u>** of different structures to climate change is a function of:
- Type of structure (structural aspects)
- Geo/cryological conditions
- Magnitude of climate change

	Permafrost Temperature Zone								
Soil Type	Zone 4 T < -7°C	Zone 3 -7°C ≤ T ≤ -4°C	Zone 2 -4°C ≤ T ≤ -2°C	Zone 1 -2°C ≤ T ≤ 0°C					
Any soil with massive ice	М	Н	Н	Н					
Peat and organic	L	М	Н	Н					
Silt or clay	М	М	М	Н					
Till	L	L	L	М					
Marine soils with salinity	М	М	Н	Н					
Sand or gravel	L	L	L	М					
Frost-shattered rock	L	L	М	М					


Temperature change sensitivity of permafrost by soil type and temperature zones Bush, E., et a	I.
(1998).	

Unlithified vs lithified permafrost - different sensitivity to climate change

2. Cultural and historical value

• There are different classes of value, including a class of a highest priority

Cultural heritage of high significance – where we are, compared to the gold mine tailings?

What types of consequences we should consider?

More towards practicalities for Handling of Engineering concerns related to degradation of permafrost

PCCH-Arctic

Arctic Climate Impact Assessment. Support Systems, and Industrial Facilities, Instanes et al. 2005, [2]

Sensitive and insensitive infrastructure – different approaches

Sensitive infrastructure – large sensitivity and large consequences \rightarrow detailed analysis is required.

Design:

- Recommended methodology risk-based analysis (one of the project aims)
- Design is based on projected air/permaforst temperatures

Practicalities:

- Piles foundations longer piles, extra measures (thermosyphon cooled pilings).
- Very light buildings funded directly on permafrost adjustable mechanical systems, adjustable foundations (issues with water supply/sewage lines)
- Elevated buildings: importance of solar radiation shading and snow removal
- **Slab-on-grade foundations** with cooling systems efficiency of passive systems (thermosyphons and air ducs) will decrease.

Synthesis of the North American practice on stabilizing foundations on permafrost, McFadden 2001, [11]:

NB! Tacking into accound site-specific geo-cryological conditions is very important.

- Placement of new piles
- Relevelling an existing the building
- New post and pad foundations to distress foundation of small buildings
- Introduction of air-forced cooling system in the crawl space
- Buildings with heated basements:
 - Sacrificing of basement and introduction of air-forced cooling system
 - Installation of natural-convection devices under existing buildings (incl. drilling of inclined holes)
 - Insulation in the heated basement
 - Refrigeration cooling of the foundation (cooling system is installed under the floor)
- Buildings with a slab-on-grade-foundation:
 - Passive cooling with natural convection devices Cooling with a forced-convection crawl space
- Three dimensional truss foundation

+ wider use of artificial cooling systems?

[+

Solutions, marked in green which might deem to be acceptable (at a different degree) from historical and cultural points of view.

Towards defining the acceptable solutions for restoration of foundations of cultural heritage

PCCH-Arctic

Recommendations for restoration of foundations of historical buildings in Ny-Ålesund are presented in Hoem and Paulsen (2008):

- Foundations resting directly on the terrain:
 - To keep original solutions
 - Replacement of rotten elements
 - Avoiding direct contact of foundation with the ground (to place stones under the foundation
- Wooden piles:
 - Position to be corrected if necessary
 - Replacement of rotten elements
 - New piles can be placed slightly further down in the terrain to provide better stability
- Wooden posts:
 - Regular inspections to checking functionality and adjustments
 - Replacement of rotten elements
- Shallow concrete foundations:
 - Regular inspections to checking functionality and adjustments
 - Replacement of weathered elements
 - Use of local sand from Zeppelinhavna for production of new concrete blocks OO

Boligbrakke G in Hiorthhamn, Svalbard (summer 2021) with temporal foundation solution as described in (Boro and Flyen, 2021). This temporal solution is in place for 18 years as for 2021.

May the following solutions deem as acceptable from historical and cultural points of view, especially when taking into account ethical and socio-cultural aspects?

- Longer pile foundations and deeper shallow foundations
- Snow management (elevated structures)
- Introduction of air-forced cooling system in the crawl space
- Insulation in the heated basement
- Refrigeration cooling of the foundation (cooling system is installed under the floor)
- Should improved foundation solution require low frequency of inspections (that would be beneficial for the cases at with the Boligbrakke G in Hiorthhamn, see picture above)?

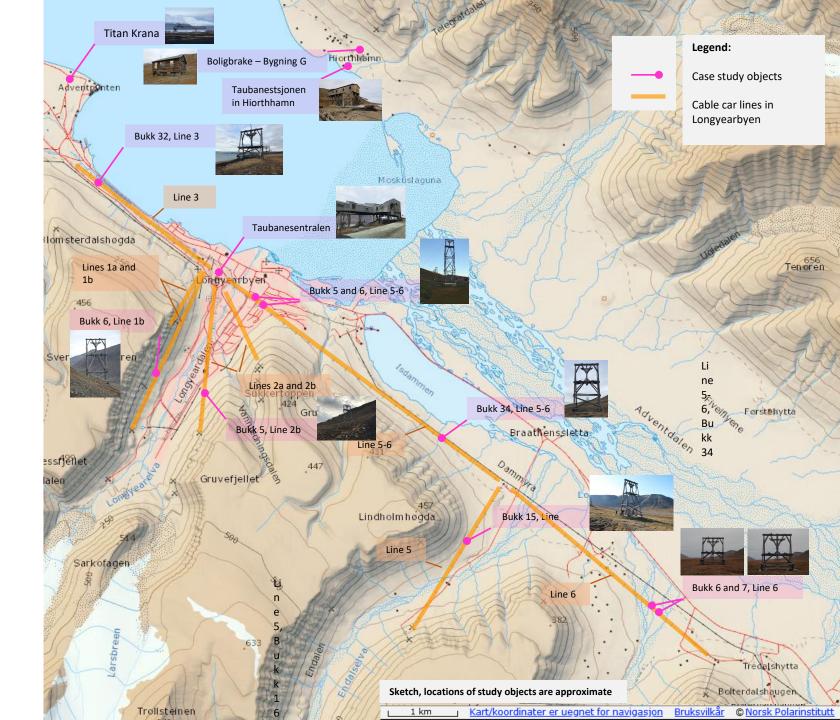

WP1. Input in the management plans of the case study objects

Table. The case study objects in PCCH-Arctic

	Longyearbyen	Object ID in
		Askeladden*
1.	System of the cableway posts, 1907–1960 (Taubanebukker,	
	Norwegian):	158657
	Cable car line 1b (<i>Taubanelinje 1b</i>)	158986
	Cable car line 2b (<i>Taubanelinje 2b</i>)	158619
	• Cable car line 3 (<i>Taubane 3</i>)	87889
	• Cable car line for mines 5 and 6 (<i>Taubane delstrekning gruve 5</i>	
	og 6)	
2.	The Titan crane, 1953 (<i>Titankrana</i> , Norwegian)	NA
3.	The old coal cableway centre in Longyearbyen, 1957	87889-6
	(Taubanesentralen i Longyearbyen)	
4.	The coal cableway station in Hiorthhamn, 1917 (Taubanestasjonen i	93040-6
	Hiorthhamn, Norwegian)	
	Ny-Ålesund	
1.	The airship mast in Ny-Ålesund, 1926 (Luftskipsmasta)	158506-2
2.	The White house, 1919 (Hvitt hus)	159 781
3.	The Tronderheimen house, 1945 (<i>Trønderheimen</i>)	159 772
4.	The London houses, 1912/1950 (Londonhusene)	159807-1
		159804-1
		159806-1
		159802-1
5.	The Green Harbour-house, 1909 (Green Harbour-Huset)	159759-1

Case-study objects in Longyearbyen

Case-study objects in Longyearbyen and Hiorthhamn

Taubanesentralen in Longyearbyen

Taubanestasjonen in Hiorthhamn

Titankrana

Line 3, Bukk 33

Line 2b, Bukk 5

Boligbarakke G in Hiorthhamn

Line 1b, Bukk 6

Line 5, Bukk 16

Line 5-6, Bukk 6


Line 6, Bukk 7

PCCH-Arctic

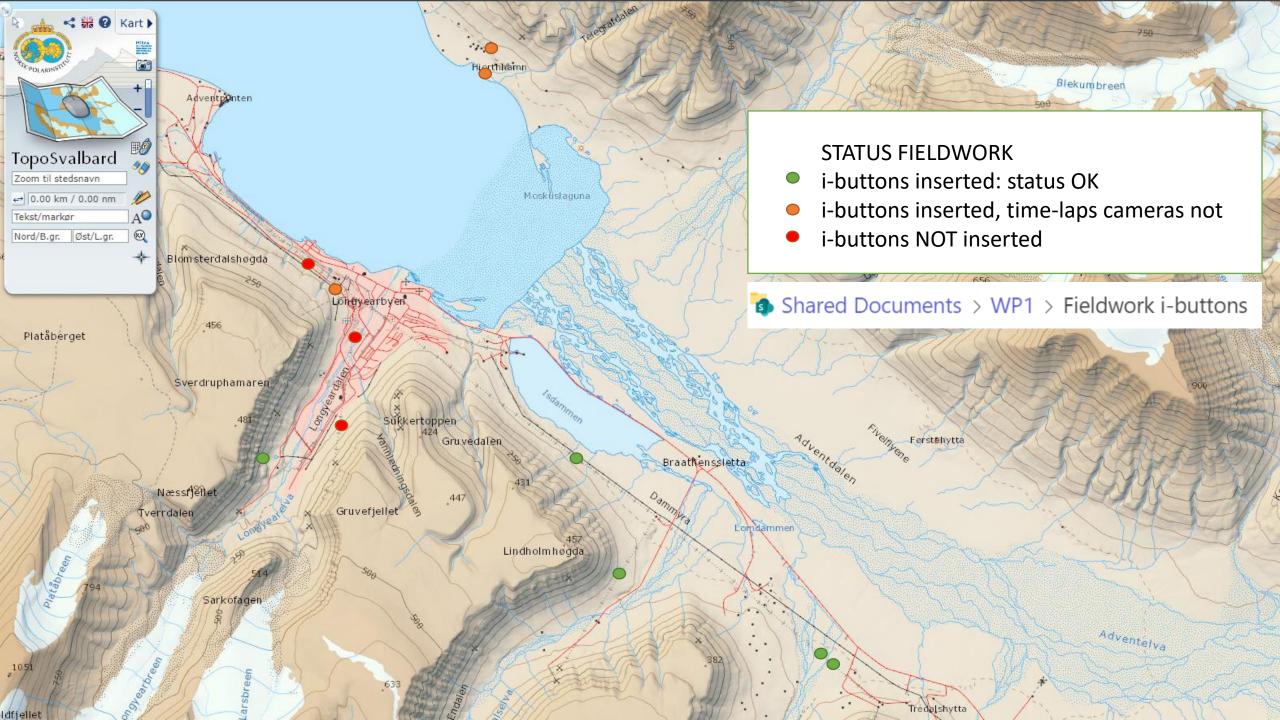
Line 6, Bukk 8

Case-study objects in Ny-Ålesund


Case-study objects in Ny-Ålesund

The Green Harbour house

The London houses



Luftskipsmasta

The White house (Managers house)

Pictures from fieldworks

Field excursion in Endalen (September 2021). Picture: Sinitsyn, A.

dGPS survey at Tital Krana (September 2022). Picture: Sinitsyn, A.

An i-button. Picture: Enevoldsen, K.

An i-button installed and marker with a shield. Picture: Enevoldsen, K.

Indicators of changes in microclimate – **changes in vegetation** under and around the structures – different vegetation species (are those typical for a warmer climate?) and much richer vegetation compared to surrounding tundra: 1) grass instead of moss; 2) much denser grass cover; 3) much greener grass cover.

Line 3, Bukk 22 (pictures 22_13 and 22_11) – changes in vegetation under the structure compared to surrounding terrain

Line 6, Bukk 27 (pictures 27_5 and 27_7) – changes in vegetation and depressions around foundations, spin-off effect – ponding of water

Influence of running water on permafrost degradation

Line 6, Bukk 10 (pictures 10_1 and 10_2) – running water in seasonal creek warms up permafrost, tilt of structure towards a creek.

Preliminary inventory of cableway posts

Types of natural hazards	Number of cases, approximately
Permafrost degradation	110
Solifluction	43
Gravitational slope processes	34
Surface wash and gravitational processes	2
Snow avalanches	4
"Special" cases	1
Additional evaluation is needed	8

Several various natural hazards are normally present at a particular location

Inventory of taubanebukker

	Ohio at ID in	Need in restoration, number of structures											
	Object ID in Aksenladen	Destanced (Dressered Examples is Examples in the second state in the second state is		Further analysis is Needed/Needed	Needed	Needed/ Urgent	Urgent						
Cableway post's lines													
Taubanelinje 1a	159054	11											
Taubanelinje 1b	158657	3	1	6	1	6	2	3					
Taubanelinje 2a	158987	5											
Taubanelinje 2b	136716	5	2	3		4	2						
Taubane 3	158619	1		17	22	1							
Taubane delstrekning gruve 5 og 6	87889	4	8	14		8	1	9					
Taubane delstrekning gruve 5	87889	4	1	8	2	1	1	5					
Taubane delstrekning gruve 6	87889			14	3	13	7	3					
Total number of different cases		33	12	62	28	33	13	20					
Total number of surveyed cableway posts and their previous locations								201					

Estimations of future air temperatures in Longyearbyen, based on exiting climate projections

Air thawing and freezing indexes

MSc thesis of Kristin Enevoldsen, UNIS/NTNU/SINTEF

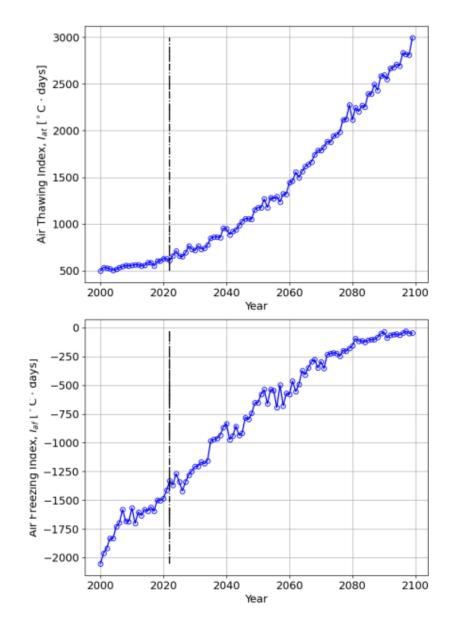


Figure 4.8: This plots show the estimated air thawing index I_{at} and air freezing index I_{af} in the period from 2000 to 2100. The vertical line indicates 2022. The future scenarios are based on predicted future temperatures from MET.

Future ground temperatures under foundations (numerical simulations) – preliminary analysis based on existing climate projections

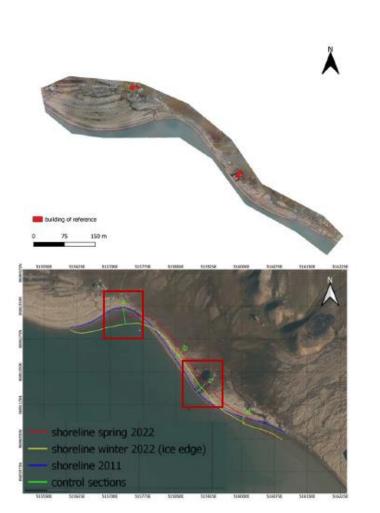

		Ground temperature $[\theta]$										
		d _f 1.5m			$d_f 2.0m$		d _f 2.5m					
	SAND	SILT	CLAY	SAND	SILT	CLAY	SAND	SILT	CLAY			
2030	>0	-0.4	-0.6	-0.2	-0.8	-1.1	-0.7	-1.2	-1.6			
2040	>0	-0.4	-0.5	>0	-0.8	-1.1	-0.3	-1.2	-1.4			
2050	>0	>0	>0	>0	-0.2	-0.8	-0.2	-0.4	-0.4			
2060	>0	>0	>0	>0	>0	>0	>0	>0	>0			

Table 4.11: Temperatures below footings from Temp/W for foundation depth d_f 1.5 m, 2.0 m and 2.5 m fot the three soil types.

Reference: MSc thesis of Enevoldsen, K. UNIS/NTNU/SINTEF

Modelling of coastal erosion at Hiorthhamn

MSc thesis of Carlo Antonello, UNIS/NTNU/SINTEF

			M	odelling	g : Results	
_	→	Cor	nstant	Sea Level Ri	sing rate	
_		Sto	rm Cor	ndition incre	eased by n% over the	wave data set
	K[10 ⁶ m ^{9/4} s ^{2/3}]	S [%]	s [mm/v]	storm conditions	20 anni EROSION from 2020 to 2042 [m]	Increase in Recession [%
Model 1 - 20 years	8.1	60	0.5	10% increase	9.4	1.2
Model 1 - 20 years	8.1	60	0.5	20% increase	11.5	23.5
Model 2 - 20 years	8.25	60	1	10% increase	9.3	1.0
Model 2 - 20 years	8.25	60	1	20% increase	11.8	28.6
	K[10 ⁶ m ^{9/4} s ^{2/3}]	S [%]	s [mm/y]	storm conditions	40 anni EROSION from 2020 to 2062 [m]	Increase in Recession [%
Model 1 - 40 years	8.1	60	0.5	10% increase	18.9	17.4
Model 1 - 40 years	8.1	60	0.5	20% increase	22.5	39.8
Model 2 - 40 years	8.25	60	1	10% increase	18.6	17.0
Model 2 - 40 years	8.25	60	1	20% increase	22.9	44.0
	EROSIO	I from	1927 to 20	62 [m] EROSION	from 2022 to 2062 [m] erosion rat	te [m/y]
Mod	lel 1	8	6.9		16.1 0.64	4
Mod	iel 2	8	6.7		15.9 0.64	2

Model was able to reproduce historical erosion rates, based on this the effects of stronger wave climate (observed increase from reference locations across the Arctic was used) were modelled. The latter provided up to 44% higher erosion rates.

Suggested solutions for handling the hazard of erosion at the site:

- Groin at the structure (to get accumulation rather then erosion by the structure)
- Headland breakwaters
- Beach nourishment/smoothing accumulative profile NW from the structure
- Combination of beach nourishment and protective structures
- Relocation of structure uphill (the currently considered approach)

Reference: MSc thesis of Antonello, C. UNIS/NTNU/SINTEF

WP2. Present and future management of cultural heritage: regulation, conservation, valorization

Main hypothesis (RH2):

Conservation of cultural heritage in the Arctic (objects, monuments, sites) faces a double challenge from the warming climate and increasing human activity. At the same time, cultural heritage can play an important role in sustainable development of the North. Management plans that take ethical and socio-cultural as well environmental and technical factors into account will make sustainable use of cultural heritage possible.

Research question (RQ2):

How do changing preferences, patterns and levels of tourist traffic combined with local demographic development impact on cultural heritage in Svalbard?

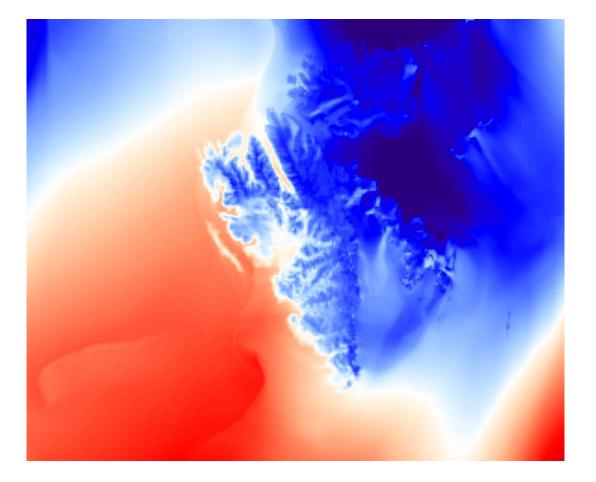
Task 2.1 Scenario-based demographic assessment of future developments in tourism and local communities

Task 2.2 Mapping and assessment of the regulatory framework surrounding conservation, restoration, and use of cultural heritage

Task 2.3 Mapping and assessment of practices, values, and attitudes connected to conservation, restoration, and use of cultural heritage

WP2. Present and future management of cultural heritage: regulation, conservation, valorization

Task 2.3 Mapping and assessment of practices, values, and attitudes connected to conservation, restoration, and use of cultural heritage


Qualitative research methods – interviews & ethnographic fieldwork

- Mapping of different **values** connected to cultural heritage
- Identification of main types of **attitudes** towards heritage preservation
- Exploration of **dilemmas** related to use/protection of cultural heritage

Need for communication, dialogue, and transparency in the cultural heritage field on Svalbard

WP3. Climate change and permafrost degradation

Interaction between atmosphere and permafrost:

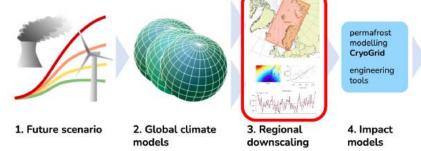
- Snow acts as an insulator
- Rain can melt snow, or refreeze

In PCCH-Arctic, new high-resolution simulations + hybrid downscaling can provide a better description of local weather:

- Changes in statistics over time
- Input to permafrost and engineering models

PCCH-Arctic

WP3. Climate change and permafrost degradation


High-resolution climate simulation over Svalbard

stakeholder

climate services

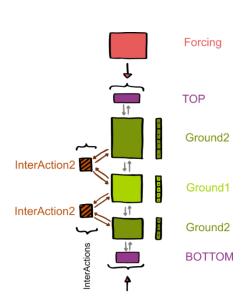
politicians

5. Users

Production of regional climate simulation with the HCLIM model:

- 2.5 x 2.5 km resolution over Svalbard
- Period: 1991-2060 (historical + SSP5-8.5 ~business as usual)
- Input data from global climate model NorESM2-MM
- ~70 output variables at 3-hourly resolution (land & atmosphere)
- Post processing tailored to provide data to CryoGrid permafrost model (UiO)
- Evaluation against historical climate (observations from e.g. Ny-Ålesund and Longyearbyen and CARRA reanalysis)
- Supplement with hybrid downscaling of CMIP6 (statistical + dynamical) to quantify ensemble spread

Oskar Landgren & Julia Lutz, Norwegian Meteorological Institute

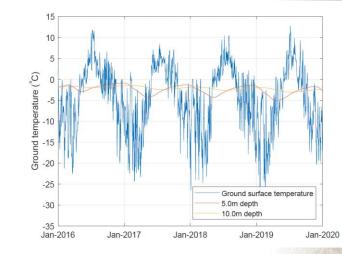

Norwegian Meteorological Institute

Simulating permafrost evolution under cultural heritage on Svalbard

PCCH-Arctic – Polar Climate and Cultural Heritage WP3 – Climate change and permafrost degradation

Simulation

- Snow?
- Building type?
- → Progress:
- Forcing data
- Model setup with CryoGrid


Validation

iButtons → Progress: Installation of iButtons

Results

- Ground temperatures
- Water content
- Ice content
- \rightarrow Progress:
- Yet to come

PCCH-Arctic

WP 4. Methodology and Technological management development

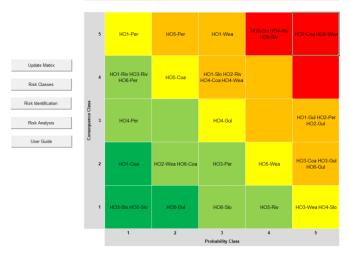
- Recommendations (a set of best practises) for holistic management of cultural heritage in Polar climate
- Input in the *Recommendations*: PCCH-Arctic methodology for decision making (climate risk to permafrost are included):
 - Coarse analysis screening for possible natural hazards and evaluating risk
 - Fine analysis probabilistic geotechnical analysis
- Specific solutions for the needs of user-partners, widely applicable in the pan-Arctic (probably we will look at the solifluctions slopes)
- Monitoring methods for support of management and maintenance plans

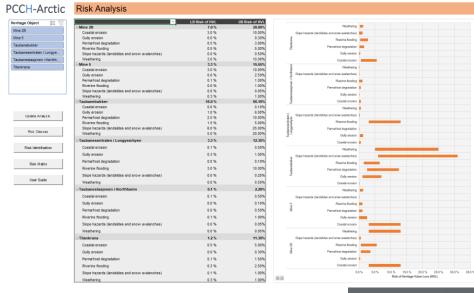
WP 4. Methodology and Technological management development

PCCH-Arctic methodology for decision making:

- Coarse analysis screening for possible natural hazards and evaluating risk based on existing hazard maps.
 Based on NS5815.
- Fine analysis probabilistic geotechnical analysis based climate projections that include statistical parameters (RCP 8.5 scenario only).

PCCH-Arctic


WP 4. Methodology and Technological management development – an example of Coarse analysis


PCCH-Arctic	Risk Cl	asses		
		Probabi	lity Classes and Estima	tes
	Class	Description	Lower Bound (LB) Probability	Upper Bound (UB) Probability
Risk Identification	1	Very unlikely	0.1 %	1.0 %
	2	Unlikely	1.0 %	5.0 %
Risk Matrix	3	Possible	5.0 %	10.0 %
	4	Likely	10.0 %	20.0 %
Risk Analysis	5	Very likely	20.0 %	50.0 %
User Guide	Cons	equence Classes	and Heritage Value Los	s (HVL) Estimates
	Class	Description	Lower Bound (LB) HVL	Upper Bound (UB) HVL
	1	Negligible	0.0 %	5.0 %
	2	Minor	5.0 %	10.0 %
	3	Moderate	10.0 %	30.0 %
	4	Significant	30.0 %	50.0 %
	5	Severe	50.0 %	100.0 %

PCCH-Arctic Risk Identification

			Add a remark column for each hazard										
itage Object 🛛 🚝 🏆	Herita	ge Object an	d Natural/Anthropogenic Hazard		Probability and C	onsequence Classes	Quantitative Probabilities and Consequences						
ine 28	Heritage Object		Natural/Anthropogenic Hazard		Probability Class	Consequence Class 💌		UB Probability -				UB Risk	
ine 5	Taubanebukker	HO1	Permafrost degradation	Per	2	5	1.0 %	5.0 %	50.0 %	100.0 %	0.5 %	5.0 %	
	Taubanebukker	H01	Slope hazards (landslides and snow avalanche:	Slo	3	4	5.0 %	10.0 %	30.0 %	50.0 %	1.5 %	5.0 %	
aubanebukker	Taubanebukker	HO1	Coastal erosion	Coa	1	2	0.1 %	1.0 %	5.0 %	10.0 %	0.0 %	0.1%	
	Taubanebukker	H01	Riverine flooding	Riv	1	4	0.1 %	1.0 %	30.0 %	50.0 %	0.0 %	0.5%	
aubanesentralen i Longye	Taubanebukker	H01	Gully erosion	Gul	5	3	20.0 %	50.0 %	10.0 %	30.0 %	2.0 %	15.0 %	
ubanestasionen i Hiorthh	Taubanebukker	HO1	Weathering	Wea	3	5	5.0 %	10.0 %	50.0 %	100.0 %	2.5%	10.0 %	
in the star star star star star star star star	Titankrana	HO2	Permatrost degradation	Per	5	3	20.0 %	50.0 %	10.0 %	30.0 %	2.0 %	15.0 %	
tankrana	Titankrana	HO2	Slope hazards (landslides and snow avalanche)	Slo	4	5	10.0 %	20.0 %	50.0 %	100.0 %	5.0 %	20.0 %	
	Titankrana	H02	Coastal erosion	Coa	5	6	20.0 %	50.0 %	50.0 %	100.0 %	10.0 %	50.0 %	
	Titankrana	HO2	Riverine flooding	RN	3	4	5.0 %	10.0 %	30.0 %	50.0 %	1.5 %	5.0 %	
	Titankrana	HO2	Gully erosion	Gul	5	3	20.0 %	50.0 %	10.0 %	30.0 %	2.0%	15.0 %	
	Titankrana	HO2	Weathering	Wea	2	2	1.0 %	5.0 %	5.0 %	10.0 %	0.1%	0.5%	
	Taubanesentralen i Longyearbyen	HO3	Permatrost degradation	Per	3	2	5.0 %	10.0 %	5.0 %	10.0 %	0.3 %	1.0 %	
	Taubanesentralen i Longyearbyen	H03	Slope hazards (landslides and snow avalanche:	Slo	1	1	0.1%	1.0 %	0.0 %	5.0 %	0.0 %	0.1%	
	Taubanesentralen i Longyearbyen	HO3	Coastal erosion	Coa	5	2	20.0 %	50.0 %	5.0 %	10.0 %	1.0 %	5.0 %	
Edit/Add Risk	Taubanesentralen i Longyearbyen	HO3	Riverine flooding	Rh	1	4	0.1 %	1.0 %	30.0 %	50.0 %	0.0 %	0.5 %	
	Taubanesentralen i Longyearbyen	HO3	Gully erosion	Gul	5	2	20.0 %	50.0 %	5.0 %	10.0 %	1.0 %	5.0 %	
Add New Row	Taubanesentralen i Longyearbyen	HO3	Weathering	Wea	5	1	20.0 %	50.0 %	0.0 %	5.0 %	0.0 %	2.5%	
NW NWW NOW	Mine 2B	HO4	Permatrost degradation	Per	1	3	0.1 %	1.0 %	10.0 %	30.0 %	0.0 %	0.3 %	
	Mine 2B	HO4	Slope hazards (landslides and snow avalanches	Slo	5	1	20.0 %	50.0 %	0.0 %	5.0 %	0.0 %	25%	
Delete Last Row	Mine 2B	HO4	Coastal erosion	Coa	3	4	5.0 %	10.0 %	30.0 %	50.0 %	1.5 %	5.0 %	
	Mine 2B	HO4	Riverine flooding	Riv	4	5	10.0 %	20.0 %	50.0 %	100.0 %	5.0 %	20.0 %	
	Mine 2B	HO4	Gully erosion	Gul	3	3	5.0 %	10.0 %	10.0 %	30.0 %	0.5 %	3.0 %	
	Mine 2B	HO4	Weathering	Wea	3	4	5.0 %	10.0 %	30.0 %	50.0 %	1.5 %	5.0 %	
	Mine 5	H05	Permatrost degradation	Per	2	5	1.0 %	5.0 %	50.0 %	100.0 %	0.5%	5.0 %	
	Mine 5	HOS	Slope hazards (landslides and snow avalanches	Slo	1	1	0.1 %	1.0 %	0.0 %	5.0 %	0.0 %	0.1 %	
Risk Classes	Mine 5	H05	Coastal erosion	Coa	2	4	1.0 %	5.0 %	30.0 %	50.0 %	0.3 %	2.5%	
	Mine 5	HOS	Riverine flooding	Riv	4	1	10.0 %	20.0 %	0.0 %	5.0 %	0.0 %	1.0 %	
	Mine 5	HO5	Gully erosion	Gul	2	1	1.0 %	5.0 %	0.0 %	5.0 %	0.0 %	0.3 %	
Risk Matrix	Mine 5	H05	Weathering	Wea	4	2	10.0 %	20.0 %	5.0 %	10.0 %	0.5 %	2.0%	
	Taubanestasjonen i Hiorthhamn	HOS	Permatrost degradation	Per	1	4	0.1%	1.0 %	30.0 %	50.0 %	0.0 %	0.5 %	
	Taubanestasionen i Hiorthhamn	HOS	Slope hazards (landslides and snow avalanche)	Slo	3	1	5.0 %	10.0 %	0.0 %	5.0 %	0.0 %	0.5%	
Risk Analysis	Taubanestasionen i Hiorthhamn	HOS	Coastal erosion	Coa	2	2	10%	5.0 %	5.0 %	10.0 %	0.1%	0.5%	
	Taubanestasjonen i Hiorthhamn	HOS	Riverine fipoding	Riv	4	5	10.0 %	20.0 %	50.0 %	100.0 %	5.0%	20.0 %	
	Taubanestasionen i Hiorthhamn	HOS	Gully erosion	Gul	6	2	20.0 %	50.0 %	5.0 %	10.0 %	1.0 %	5.0 %	
User Guide	Taubanestasjonen i Hiorthhamn	HOS	Weathering	Wea	6	5	20.0 %	50.0 %	50.0 %	100.0 %	10.0 %	50.0 %	

PCCH-Arctic Risk Matrix

References

- 1. Esch, D. C. and T. E. Osterkamp (1990). "Cold regions engineering: Climate warming concerns for Alaska." Journal of Cold Regions Engineering 4(1): 6-14.
- 2. Instanes, A., et al. (2005). Ch. 16 Infrastructure: Buildings, Support Systems, and Industrial Facilities. ACIA, 2005. Arctic Climate Impact Assessment. ACIA Overview report. Cambridge University Press: 1022.
- 3. Andersland, O. B. and B. Ladanyi (2004). Frozen Ground Engineering, 2nd Edition. Hoboken, New Jersey, John Wiley & Sons.
- 4. van Everdingen, R.O., Muli-Language Glossary of Permafrost and Related Ground-Ice Terms. 2005, International Permafrost Association: The Arctic Institute of North America, The University of Calgary, Calgary, Alberta, Canada T2N 1N4.
- 5. McFadden, T. (2001). Design Manual for Stabilizing Foundations on Permafrost.
- 6. Christiansen HH, B Etzelmüller, K Isaksen, H Juliussen, H Farbrot, O Humlum, M Johansson, T Ingeman-Nielsen, L Kristensen, J Hjort, P Holmlund, ABK Sannel, C Sigsgaard, HJ Åkerman, N Foged, LH Blikra, MA Pernosky and R Ødegård (2010). The thermal state of permafrost in the Nordic area during the International Polar Year. Permafrost and Periglacial Processes, 21:156-181.
- 7. Christiansen HH, GL Gilbert, N Demidov, M Guglielmin, K Isaksen, M Osuch and J Boike (2019a). Permafrost thermal snapshot and activelayer thickness in Svalbard 2016-2017, 18 p. First SIOS SESS report: <u>https://sios-svalbard.org/SESS_Issue1</u>
- Boike J, I Juszak, S Lange, S Chadburn, E Burke, PP Overduin, K Roth, O Ippisch, N Bornemann, L Stern, I Gouttevin, E Hauber and S Westermann (2018). A 20-year record (1998–2017) of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen), Earth Syst. Sci. Data, 10, 355-390, <u>https://doi.org/10.5194/essd-10-355-2018</u>.
- 9. Hanssen-Bauer, I., et al. (2019). Climate in Svalbard 2100 a knowledge base for climate adaptation.
- 10. Bush, E., D.A. Etkin, D. Hayley, E. Hivon, et al., Climate Change Impacts on Permafrost Engineering Design., in Environment Canada. 1998, Downsview, Ontario: Environmental Adaptation Research Group.
- 11. Sysselmannen på Svalbard, Hoem, S. and .Paulsen, B., 2008. Ny-Ålesund. Forvaltningsplan for de fredete bygningene i tettstedet (Ny-Ålesund. Management plan for the listed buildings in the settlement).
- 12. Riksantikvaren. Flyen, A.-C., Boro, M. (2020). Svalbard: Hiorthhamn Kulturmiljø. Kulturminner og klima risikovurdering og planlegging av tiltak. En del av prosjekt Adapt Northern Heritage 2020: 29.

