NG

Jordparametere ved jordskjelvdimensjonering

Sammenstilt av Jörgen Johansson,

Bidrag fra mange: Steven Kramer, Brian Carlton, Jean-Sebastian L'Heureux, mfl. og litteratur

Innhold

- Grunnleggende materialoppførsel for jordskjelvanalyser
- Labførsøksapparater
- Feltmålinger av Vs og korrelasjon mot CPT
- **T** Eksempel på empiriske ligninger for ikkelinær oppførsel
- Eksempel på empiriske korrelasjoner og egenskaper for forskjellig material, leire, kvikkleire, sand/silt, kalksement, grovere material og knust berg

Parameter for jordskjelvanalyser og vurderinger

- Skjærmodul, Gmax/G0 eller skjærbølgehastighet, vs
- Stivhet og Demping variasjon med skjærtøyning
- Syklisk styrke (ikke så mye)
- Tverrkontraksjonstall

Soil stress strain behaviour (simplified!)

Shear strain is not proportional to shear stress

Large Strain Behaviour

NG

Equivalent Linear Models

The actual nonlinear hysteretic stress-strain behaviour of cyclically loaded soils can be approximated by equivalent linear properties called shear modulus reduction and damping curves

An **improved method** for determining material soil damping from DSS and Triaxial laboratory tests

General nature of loading – combined cyclic and offset load (e.g. average + variable wind load)

Most previous damping values are derived from symmetric cyclic strain-controlled tests

Offset load component influencing the damping must be corrected for when the offset is large

The **improved method** closes the cycles where strain accumulation is present

 \rightarrow Revised damping characteristics

 $NGI \rightarrow$ Incorporated in the NGI in-house DLP program

Labforsøk - apparater

Lab test for different strain levels

NG

Resonant Column test Evaluating (small) pore pressures from

Measurement of Large Strain G and D: Direct Simple Shear

- Can reproduce earthquake stress conditions more accurately than triaxial test (similar to vertically propagating horizontal shear wave)
- **Typical strain range 0.1 % to 20 %**
- Can use stacked metal rings or wire reinforced membrane

Measurement of Large Strain G and D: Triaxial

- Can be isotropic (level ground) or anisotropic (sloping ground)
- Cycle vertically (compression and extension)
- Strain range of 10⁻² % to 10 %
- Typically conducted at 1 hz
- Can lead to stress reversals depending on if the deviator stress is larger than the confining stress

Measurement of Large Strain G and D: RCTS

- Resonant Column Torsional Shear test
- Torques soil back and forth
- Resonant Column
 - Performs test at 100 Hz
 - uses accelerometers to measure strain
 - G calculated from resonant frequency
 - Strain range 10^{-5} % to 10^{-2} %
- Torsional Shear
 - Performs test at 1 Hz
 - uses displacement transducers
 - G measured directly
 - Strain range 10^{-2} % to 10 %
- Hollow soil specimen often used to get uniform measurement of G

Measurement of Vs: Bender Element Test

- Bender elements embedded in top and bottom of sample
- Pulse induced at source element
- Pulse recorded at receiver element
- Velocity calculated from travel time and known height of specimen
- **7** Can be performed during other tests

NG

Feltmålinger

Measurement of Vs

- Direct field measurements
 - Seismic downhole, uphole
 - Seismic CPT
 - Seismic cross-hole
 - Suspension logger
 - SASW
 - MASW
- Laboratory measurements
 - Resonant column
 - Bender elements
- Indirect measurements
 - Correlation to CPT
- NGI– Empirical models

Measurement of Vs: Uphole / Downhole

- Source sends out seismic waves which are then recorded at a receiver
- ▼ Vs = distance / time
- Material and geometric spreading limit practical depths to 30-60 m

Measurement of Vs: Seismic CPT

- Similar to downhole
- Geophone (receiver) mounted on cone
- With two geophones, we can obtain time interval and more precise Vs measurement

Measurement of Vs: Cross-hole

- Both the source and receiver located in boreholes
- Easier to measure Vs of individual layers
- More expensive than downhole
- Multiple receivers can be used to estimate material damping

Measurement of Vs: Suspension Logger

- Source and receivers lowered into fluid filled borehole
- Impulse from source travels through fluid to soil
- Seismic wave travels through soil emitting energy back into the fluid and receivers
- Difference in travel time to receivers used to calculate Vs

Stonely wave

- Eksempel test i
 Kalksementpeler
- Mange forskjellige type bølger
- Trenger å skjønne frekvensinnhold
- Numerisk modell nødvendig for tolkning

Measurement of Vs: SASW

- Spectral Analysis of Surface Waves
- The travel time between the receivers at each frequency is calculated using the phase difference
- The Rayleigh wave phase velocity and wavelength are then calculated for each frequency to get a dispersion curve
- Theoretical layering and Vs matched to the measured dispersion curve until a fit is found (inversion)

Dispersion curve

MASW analysis

NG

- Use dispersive properties of soil velocity of propagation depends on frequency.
- ⇒ High frequency near surface
- ⇒ Low frequency affects deeper layers
- Dispersion curve (Careful!)

Typiske bølgehastigheter

NG

Soil Type	P-Wave Speed	S-Wave Speed		
	(m /s)	(m /s)		
Water	1,450	0		
Glacial till	600 - 1,800	200 - 600		
Dry gravel	500 - 1,000	250 - 400		
Saturated gravel	1,450	300 - 400		
Dry sand	300 - 600	150 - 200		
Saturated sand	1,450	150 - 250		
Silts and stiff clays	1,450	100 - 200		
Plastic clay	1,450	50 - 100		
Organic soils	1,450	30 - 50		

Modifisert fra Massarsch og Fellenius 2008

Swedish clays

NG

■ fra L'Heureux & Long

Refs. SGI Report 40, Varia 508, Andréasson, 1979, Wood 2015 Same scale as in previous plots

Material egenskaper i basert på labforsøk

Modulus reduction /damping curves

- Dynamic Soil Properties and factors that affect them
 - Seed and Idriss 1970, Hardin and Drnevich 1972a, 1972b, Kokusho et al. 1982, Sun et al. 1988; Drnevich et al. 1989, Vucetic and Dobry 1991; Kagawa 1992, Ishibashi and Zhang 1993, Lanzo et al. 1997, Vucetic et al. 1998, Darendeli 2001, Menq 2003, Stokoe et al. 2004, Zhang et. al. 2005, Aggour and Zhang 2006, Kallioglou et al. 2008, Nie 2008, Amir-Faryar 2012, Biglari 2012, Amir-Faryar and Aggour 2012b, 2015.
- Analytical models to predict the nonlinear behaviour of soils
 - Kondner and Zelasko 1963, Hardin and Drnevich 1972a, 1972b, Anderson 1974, Borden et al. 1996, Darendeli 1997, 2001, Menq 2003, Amir-Faryar 2012, Groholski et. al. 2016

Partially from Amir-Faryar et. al. 2017 Universal model forms for predicting the shear modulus and material damping of soils

Table 1. Summary of the available model functions.

fra Amir-Faryar et. al. 2017

	Relationship	Comments	Data reference
Shear modulus	$\tau = \frac{\gamma}{\frac{1}{\text{Gmax} + \frac{\gamma}{\text{rmax}}}}$	Where: τ is shear stress; γ is shear strain; Gmax is small- strain shear modulus; and τ max is shear strength Where: α = shape factor; τ = shear stress at yield; and	Hardin and Drnevich (1972a, 1972b) Anderson (1974)
	$G \max_{1+\alpha(\frac{\tau}{\tau_y})^{n-1}}$	R = correlation number for Ramberg-Osgood curve	
	$\frac{G}{Gmax} = \frac{1}{(1+a(y)^b)^c}$		Borden <i>et al</i> . (1996)
	$\frac{G}{Gmax} = \frac{1}{1 + (\frac{y}{x})^{a}}$	Where: $\gamma r = reference strain; a = curvilinear coefficient.$	Darendeli (2001)
	$\frac{G}{Gmax} = \frac{1}{1 + \left(\frac{y}{y_{c}}\right)^{a}}$	For Sandy and Gravelly Soils	Menq (2003)
		$\gamma_r = 0.12 C_u^{-0.6} \left(rac{\sigma_0}{P_a} ight)^{0.5 C_u} a = 0.86 + 0.1 \log(rac{\sigma_0}{P_a})$	
	$\frac{G}{Gmax} = \frac{1}{\left(1 + \left(a(\gamma^b)\right)^c\right)^d}$		Amir-Faryar (2012)
Damping ratio	$\frac{D}{Dmax} = \frac{\frac{y}{y_r}}{1 + \frac{y}{y_r}}$ $D(\%) = a(\frac{G}{1 + 1})^2 + b$	Where: D_{max} is the maximum damping ratio of the soil	Hardin and Drnevich (1972a) (Hardin and Drnevich 1972b) Borden <i>et al</i> . (1996)
	$\frac{D_s}{D_{s'}\min} = 1 + \frac{\gamma}{\gamma_{ro}}$	Where, γ rD is the reference strain with respect to normalised material damping ratio. The value of Ds equals to 2DS,min at $\gamma = \gamma$ rD.	Darendeli (1997)
	$D_{Ma\sin g'} = C_1 D_{Ma\sin g} + C_2 D_{Ma\sin g}^2 + C_3 D_{Ma\sin g}^3$ $D_{Ma\sin g}(\%) = \frac{100}{5} \times \left[4 \frac{\gamma - \gamma_r ln(\frac{\gamma + \gamma_r}{\gamma_r})}{\gamma_r} - 2\right]$	Where: $C1 = -1.1143a2 + 1.8618a + 0.2523$; $C2 = 0.0805a2 - 0.0710a - 0.0095$; and $C3 = -0.0005a2 + 0.0002a + 0.0003$	Darendeli (2001)
	$\pi \qquad \frac{\gamma}{\gamma+\gamma_r}$	0.0005	
	$D_{Smin} = C_{D2} C_u^{b2} D_{50}^{b3} \left(rac{\sigma_0}{P_a} ight)^{n2}$	For Sandy and Gravelly Soils: $C_{22} = 0.55$; $b_2 = 0.1$; $b_3 = -0.3$; $pD = -0.08$	Menq (2003)
	$D(\%) = (a\gamma^b) - (c\gamma^d) - e$	Strain Range: 0.001 $\% < \gamma < 3\%$	Amir-Faryar (2012)

Equivalent Linear Models: Darendeli (2001)

- Silts, clays, and silt/clay/sand mixtures
- 110 resonant column tests on samples from 20 sites
- Input parameters: PI,
 σ'm, OCR, f, N
- Not very sensitive to f or N

NG

Eksempel

- **7** Zhang 2005
- Darendeli 2001

Small Strain Properties of Soils: Trends

Increasing Parameter	G _{max} Clay	G _{max} Sand	D _{min} Clay	D _{min} Sand
σ' _m	1	\uparrow	\downarrow	\downarrow
e	\downarrow	\downarrow	\downarrow	\downarrow
Time	\uparrow	\uparrow	\downarrow	\downarrow
OCR	\uparrow	negligible	\downarrow	negligible
Frequency	negligible	negligible	1	1
Number of Cycles	negligible	negligible	negligible	negligible
PI	\downarrow		↑	
FC	\downarrow	\downarrow		
D ₅₀		\uparrow		\downarrow
Cu		\downarrow		\uparrow

NG

Large Strain Behaviour: Trends

Increasing Parameter	G/G _{max} Clay	G/G _{max} Sand	D Clay	D Sand
σ'_{m}	\uparrow	1	\downarrow	\downarrow
e	\uparrow		\downarrow	
Time	\uparrow		negligible	negligible
OCR	negligible	negligible	negligible	negligible
Frequency	negligible	negligible	\downarrow	negligible
Number of	I	*	1	1
Cycles	\downarrow		\downarrow	\downarrow
PI	\uparrow		\downarrow	
FC				
D ₅₀		1		1
Cu		\downarrow		

NG

Viktige parametere for Gmax og tøyning for 30% reduksjon av G

Parameter	Importance to ^a				
	G_0		7	0.7	
	Clean	Cohesive	Clean	Cohesive	
	sands	soils	sands	soils	
Strain amplitude	V	V	V	V	
Confining stress	V	V	V	V	
Void ratio	V	V	R*	V	
Plasticity index (PI)*	-	V	-	V	
Overconsolidation ratio	R	L	R	L	
Diagenesis*	V*	V*	R*	R*	
Strain history*	R	R	V	V	
Strain rate	R	R	R	R*	
Effective material strength	L	L	L	L	
Grain Characteristics	L*	L*	R	R	
(size,shape,gradation)	R V L L*				
Degree of saturation					
Dilatancy	R	R	R	R	
^a V means Very Important, L means Less Important, and R means					
Relatively Unimportant					
* Modified from the original table presented in Hardin & Drnevich[53]					

NG

Fra Benz 2007

Gmax versus Time in the Lab

^(393, 393)

Effekt av lastrate, gjennomsnittlig skjærspenning

Se f.eks. Andersen 2015

Effekt av lastrate på statisk styrke og på antall sykler til brudd

Modifisert Andersen 2015, fra Lunne & Andersen 2007

NG

Modifisert fra Andersen 2015 med data fra Ni et. al. 2012

Gmax i Leire

- Empiriske ligninger fra lab og/eller feltmålinger.
 - Inndata kvalitet og stedspesifikke
- Gmax/su, Gmax/ σ_{vc} ',

$$\frac{G_{\text{max}}}{c_{u}^{\text{DSS}}} = 325 + 55/(\frac{I_{p}}{100})^{2}$$
?
G_{max}/s_u^{DSS} = (30+300/(I_p/100+0.03))·OCR^{-0.25} and
G_{max}/Oref'= (30+75/(I_p/100+0.03))·OCR^{0.5}

Inkluderer OCR Reflekterer øvre jordlag bedre? NGI Obs -+ fremfor OCR

$$G_{max} = A f(e) OCR^k \left(\frac{p'}{p_{ref}}\right)^n$$

Hardin & Black 1968, Hardin 1978

fra K. H. Andersen, «Cyclic soil parameters for offshore foundation design. The 3rd ISSMGE McClelland Lecture,» 2015, ISFOG III. Tilgjengelig på nett.

Indirect Measurement of G_{max} (Vs): Carlton and Pestana (2016)

 $G_{max,in-situ}/p_{at} = 0.78 \times [c_1 \times e^{c_2} \times (\sigma'_m/p_{at})^n \times OCR^k \times (FC+1)^{c_7} \times [1 + B(C_u^{c_8} - 1)]]^{1.10}$

$$n = c_3 \times C_u^{B \times c_4}$$

$$k = c_5 \times \left(\frac{PI}{100}\right)^{c_6} \le 0.5$$

$$B = \begin{cases} 1 & \text{for } FC < 30\% \\ 0 & \text{for } FC > 30\% \end{cases}$$

where e is void ratio, σ'_m is mean confining pressure, p_{at} is atmospheric pressure, OCR is overconsolidation ratio, FC is fines content, C_u is coefficient of uniformity and PI is plasticity index.

http://dx.doi.org/10.1016/j.soildyn.2016.01.019

Korrelasjoner med CPTU data

- Spissmotstand,
 ~styrke ved stor
 tøyning
- Vs, Gmax små tøyninger, målt med SCPT, MASW, SDMT

$$V_s = 8.35 \cdot (q_{net})^{0.22} \cdot (\sigma'_{v0})^{0.357} \quad V_s = 71.7 \cdot (q_{net})^{0.09} \cdot \left(\frac{\sigma'_{v0}}{w}\right)^{0.09}$$

fra L'Heureux & Long

033

Korrelasjoner med udrenert skjærstyrke

- Stedspesifikke
- Basert på forskjellige type felt/labmålinger
- Sjekk antakelser og grunnlag i ursprungsrefera nsen!
- Oppdateres ofte når nye data blir tilgjengelige

NG

Study/Reference	Type of clays	Vs (m/s) or <u>Gmax</u> (kPa)	<u>su</u> determined from
Larsson and Mulabdic (1991)	Swedish (10) and	(208)	Unspecified
	Norwegian (4) sites.	$G_{max} = \left(\frac{1}{I} + 250\right) s_u$	
	Medium-high plasticity.		
Larsson and <u>Mulabdic</u> (1991)	Swedish (10) and		Unspecified
	Norwegian (4) sites.		
	Low-plastic clays to	$G_{max} = 504 \cdot s_u / w_L$	
	high-plastic clayey		
Distances (1004)	Son Francisco hav alav	u = 22 - 0.475	Eall come tests
Ashfand at al. (1007)	San Flancisco day clay	$V_s = 23 S_u^{-0.475}$	Fair cone tests
Ashlord et al. (1997)	Bangkok clays (13 sites)	$V_s = 23 S_u^{0.175}$	Unspecified
(2010) Libitlermone at al	Bangkok clays (3 sites)	$V_{\rm s} = 187 \left(\frac{S_u}{2}\right)^{0.072}$	Unspecified
(2010), Likitiersuang et al.	based on down-hole and	(p_a)	
(2013)	MAS w Tespectivery	$V_s = 228 \left(\frac{s_u}{p_a}\right)^{0.510}$	
Andersen (2004)	Normally consolidated clays	$\frac{G_{max}}{s_u^{DSS}} = 325 + 55/(\frac{I_p}{100})^2$	Direct simple shear tests (DSS)
Andersen (2004)	Sensitive and quick clays (remoulded strength; sur< 0.5 kPa)	$\frac{G_{max}}{S_u^{DSS}} = 800 \ to \ 900$	DSS
Yun et al. (2006)	Gulf of Mexico (38 tests)	$V_s = 19.4 s_u^{0.36}$	Unspecified
Taboada et al. (2013)	Bay of Campeche clay	$V = 21 c^{0.414}$	UU triaxial and in
		$v_s - 51 S_u$	situ vane tests
Baxter et al. (2015), Baffer	Gulf of Mexico clay,	Follows same relationship	DSS
(2013)	Presumpscot clay (Gulf	with L as proposed by	
	of Maine) and organic silt	Andersen (2004)	

Usikkerheter i ligninger

Usikkerheter i ligninger

Måle i felt og lab på noen få steder og benytt ligninger til å skjønne variasjon

Kvikkleire

Kvikkleire

Gmax/su old and new data

Kvikkleire demping

NG

Sykliske Dss forsøk på kvikkleire for skråningsstabilitet

Parameter	Dss 3	Dss 5	Dss 7
s _{u,τc} (kPa) (statisk styrke)	45	51	62
$\tau_c/s_{u,\tau c}$	0,63	0,74	0,83
τ_{cy} (kPa) syklisk spenning		18	
G _{max} (MPa)	96	64	57
G _{sec} N=2, (MPa)	17 ((@γ _{cy} =0,	1%)
Poretrykk, u_p/σ_{vc} , N=10 (%)	3,5	7	9
v _s (m/s) skjærbølgehastighet	220?	180	170
v _{s,sec} (m/s)		95	
Vibration (mm/s) @ 1 Hz	97	(=v _{s,sec} *	γ _{cy})
Acceleration (m/s ²)	0,6 (s	ammen 06 a l	lignes PGA)
NS 1998-5 sier ved α S=0,1	G/Gr	nax=0,8 ((+-0,1)

Sand/Silt

Gmax i sand

- K. Ishihara, Soil behaviour in earthquake geotechnics, American Library Association, 1996
- Wichman & Triantafyllidis 2009 (RC-test på tørr sand)
 - Effekt av Coefficient of uniformity.
- **•** SVV 604

Sand/Gravel material laboratory based Gmax, G/Gmax and D

$$G_{\max} = A \frac{(a-e)^2}{1+e} \left(\frac{p}{p_{\text{atm}}}\right)^n p_{\text{atm}}$$

$$A = 1563 + 3.13C_u^{2.98}$$

$$a = 1.94 \exp(-0.066C_u)$$

Wichtmann et. al. (2009, 2013, 2015)

 $n = 0.40C_u^{0.18}$

- Resonant column tests on a large set of materials with different grain size distribution. Only dry material.
- e Voidratio, skeleton

$$e_{\text{skel}} = (e + FC[\%]/100)/(1 - FC[\%]/100)$$

- «Arbitrary limit» of Fines content FC
- p Average effective normal pressure, p_{atm}=100 kPa
- **n** Pressure exponent

Sand/Silt

For silt og sand er den mest relevante parameteren syklisk udrenert skjærfasthet, $\tau_{cy,u}$, som må bestemmes ved å ta hensyn til mulig oppbygging av poretrykk. Denne er sterkt avhengig av materialets relative lagringstetthet, D_r . Hvis det ikke finnes noen lab resultater for syklisk udrenert skjærfasthet, kan man bruke litteratur data fra for eksempel *ref* /2/. I materialer som ikke anses utsatt for liquefaction (se kapittel 6) kan konservative verdier for forholdet $\tau_{cy,u}/\sigma'_v$ tas fra denne referansen som gitt nedenfor:

D _r	$\tau_{cy,u}/\sigma'_v$
40 %	0,16
50 %	0,19
60 %	0,23
70 %	0,30
80 %	0,50

Fremgår ikke i SVV 604 om dette er for 10 last sykler

Equivalent Linear Models: Menq (2003)

- Non-plastic silts and sands
- Similar methodology as Darendeli (2001)

$$\gamma_{r} = 0.12 \times C_{u}^{-0.6} \times \left(\frac{\sigma_{o}'}{P_{a}}\right)^{0.5 \times C_{u}^{-0.15}}$$

 $a = 0.86 + 0.1 \times \log (\sigma_o'/P_a),$

Well-graded soils tend to be more nonlinear than uniformly graded soils

Poisson's ratio

- Drained and dry material, use a Poisson's ratio of 0,3
- Saturated clay 0,5 (or close 0,48-0,49).
 Numerical issues with incompressibility
- Decreases with depth (confinging pressure), (Hamilton 1979)
- Organic materal (mud etc.) gas -> nonsaturated thus a lower poisson value than saturated clay.
- Ballast and crushed rock ~0,25

NG

Fig. 14. Poisson's ratio v for a constant void ratio e=0.55 as a function of the coefficient of uniformity C_u , v-values calculated with Eqs. (1)–(8).

Fig. 13. Poisson's ratio ν for a constant void ratio e=0.825 as a function of fines content *FC*, calculated from Eq. (1) with the correlations (23)–(25) and from Eq. (6) with the correlations (28)–(30).

Kalksement

NGI test shear modulus

- **7** $G_0 = 541 * C_u / w_n$
- **7** 540*160/.65 =130 MPa

Skjærmodul og demping for kalksement Ledsgård

NG

India cement treated clay result of RCTS

from Subramaniam 2020

Knust berg, grovere materialer, komprimert fyllmaterial

Knust Berg NGIs database skjærmodul

- Vakuum Triax försök, naturlig vattenkvot.
- Stort antall cykler, ingen ändring i cyklisk skjuvmodul. Flera olika faser med 1000 cykler i varje. Totalt antall cykler per försök upp till 90 000.
- Mycket information som inte är publicerat/rapporterat

 $G(p) = G_a \left(\frac{p}{p_a}\right)^n$ $p_a = 100 \, kPa$

(Dawson et. al., 1994)

Type materiale	Partikkel størrelse mm	Sted	<i>G_a</i> (Mpa)	n	Tilpassning
Grus med sandpukkel (A)	0-32	Hovinmoen grustak	116	0,83	Nokså god
Grus uten sandpukkel (D)	0-32	Hovinmoen grustak	98	0.59	Meget god
Knust stein Pukk (B)	25-50	Åndalen pukkverk, god stein (klasse 2)	99	0.0	Nokså god
Knust stein (E)	20-120	Åndalen pukkverk, god stein (klasse 2)	159	0.3	Meget god
Knust stein (F)	0-120 m noe finstoff	Åndalen pukkverk, god stein (klasse 2)	141	0.25	Svært god
Knust stein (C)	0-120 mm	Garderfjell, mindre god stein (klasse 3-4)	99	0.0	Nokså god

NG

Rollins et. al. 2020 and NGI tests

 τ_{cv}/τ_{av}

Eksempel på effekt av overlagringstrykk på skjærmodulens og dempingens variasjon med tøyning forknust berg

-25----

Slutt

NGI

NORGES GEOTEKNISKE INSTITUTT NGI.NO